LOW NOISE ELECTRONICS FOR LIQUID ARGON DETECTORS

Sergio Rescia

Brookhaven National Laboratory

FLARE WORKSHOP

FERMILAB, Nov. 4 - 7 2004

- Noise Fundamentals: Series, Parallel, 1/f noise sources
- Transmission line connection to the detector
- ICARUS case
- Cable skin effect losses
- Wire "diffusive line" noise
- Devices: GaAs, BJT, Si JFET, CMOS
- Considerations on Cryogenic Electronics
- Conclusions

Equivalent Noise Charge: ENC (S/N ratio)

Figure 0-1.

An infinitely narrow probability density function of the detector charge would appear at the output of the analog processing chain as a gaussian distribution with the variance $\sigma(e_n, i_n)$. This variance can be referred to the input as the *equivalent noise charge* (ENC), defined as the *current that delivered as an impulse at the preamplifier input will generate at the output a signal of amplitude* σ .

$$ENC = \frac{1}{q} \left(\frac{1}{2} \cdot e_n^2 \cdot C_T^2 \cdot \frac{A_S}{t_p} + \frac{1}{2} \cdot i_n^2 \cdot t_p \cdot A_P + C_{1/f} A_{1/f} C_T^2 \right)^{(1/2)}$$
 (rms electrons)

The parameters used are: $e_n = 0.5 \text{ nV}/\sqrt{Hz}$, $i_n = \sqrt{4K_BT/R_F}$, $C_{TOT} = 1 \text{nF}$, $R_F = 1 \text{ k}\Omega$ and the filter is CR - RC².

Transmission Line Connection: Ideal Lossless Line

$$\overline{v_{on,s}^{2}} = \frac{e_{n}^{2}}{4R_{0}^{2}} \frac{1}{2\pi} \int_{0}^{\infty} \left| R_{G} (1 + \Gamma e^{-2j\omega t_{d}}) T(j\omega) \right|^{2} d\omega \qquad \overline{v_{on,p}^{2}} = \frac{i_{n}^{2}}{4} \frac{1}{2\pi} \int_{0}^{\infty} \left| R_{G} (1 - \Gamma e^{-2j\omega t_{d}}) T(j\omega) \right|^{2} d\omega$$

$$T = 90K$$

$$Z_{0} = 50\Omega t_{p} = 200ns$$

$$Z_{0} = 50\Omega t_{p} = 200ns$$
Delay Time [ns]

ICARUS CASE: ENC vs. shaping time

Assume a CR-RC shaping

- $\bullet e_n = 0.4 \text{ nV/Sqrt[Hz] (slope } 2.5e^-/pF)$
- $\bullet R_f = 1E6 \Omega$
- •ENC = $500 \text{ e}^- + 2.5 \text{ e}^-/\text{pF}$ at 1 µs shaping time constant

Other noise sources: Cable Skin Effect losses

Due to the skin effect at high frequency the conduction takes place only near the surface of a conductor, and the current density decays exponentially with depth. The distance at which it is reduced by 1/e is the penetration depth:

$$\delta = \left(\frac{2\rho}{\omega\mu}\right)^2$$

The skin effect penetration depth is 66 μ m at 1 MHz for copper at 20 o C and 29 μ m at 90 K. For a coaxial cable of inner radius a and outer radius b the resistance per unit length is:

$$R_{SC} = \frac{1}{2\pi} \left(\frac{1}{a} + \frac{1}{b} \right) \sqrt{\frac{\omega \mu \rho}{2}}$$

Calculation of different contributions to the equivalent noise charge. The values assumed are: $_n=0.5~nV/\sqrt{H}$, $C_D=400~pF$, $R_0=50~\Omega$ and $t_p=20~ns$, CR^2-RC^2 bipolar shaping. (a): The preamplifier noise contribution only, assuming the line at 300 K (solid line) and 90 K (dashed line) resulting in a different attenuation. (b): is the contribution of the noise generated by the distributed resistance of the line ("skin effect noise") at 300 K (solid line) and 90 K (dashed line). The line skin effect resistance is $R_S=0.56~\Omega$ at 10 MHz.

Other Noise Sources: Wire "diffusive line" noise

The equivalent noise resistance of a low noise device with en = 0.4 nV/ \sqrt{Hz} is only 10 Ω : any resistor in series with the input increases the noise. The stainless steel wire ($\rho = 70 \,\mu\Omega/cm$ at 20 °C) along with the capacitance to ground (i.e. "low impedance" nodes) constitutes an R-C diffusive line:

Noise current and ENC contribution of the wire diffusive line noise in comparison to the series and parallel noise. Wire length = 5m.

Devices: Gallium Arsenide

- •High 1/f Noise, especially at room temperature
- •Works at cryogenic temperature (better: lower series noise, lower 1/f noise)
- •Expensive technology
- •Limited availability: longer development time
- •Used in the ATLAS Hadronic End-Cap calorimeter (developed by MPI Munich)
- •Prototypes developed for ATLAS LAr at INFN Milano (D. Camin et al.)

•CONCLUSION:

Probably not suitable for room temperature.

Could work at cryogenic temperature

Si JFET: Temperature Effects:

NJFET DC characteristics vs. temperature. (a): I_D vs. V_{DS} characteristics of a monolithic H-type (see text) NJFET transistor (W/L=11,400/5) at T = 120K (dashed line) and = 300 K (solid line). (b): I_D vs. V_{DS} characteristics at T = 50 K for a W/L = 2500/5 monolithic NJFET.

Temperature effects on the pinch-off voltage V_T and maximum current I_{DSS} (a) and on g_m (b) down to the freeze-out region. The measurement has been performed on a W/L=2500/5 device.

Si JFET: Noise vs. Temperature

Noise characteristics vs. temperature. (a): Series noise voltage density at 300 K, 120 K and 90 K for an unirradiated monolithic H-type NJFET (W/L = 2800/5). The transistor has been measured in the saturation region with $V_{DS} = 2.5$ V and $I_D = 1$ mA. (b): Temperature dependence for the high frequency component (white noise) of the series noise voltage density of a preamplifier whose input device is a monolithic H-type NJFET (W/L = 11400/5). The e_n values have been obtained from equivalent noise charge measurements. The input transistor was operating in the saturation region with a standing current $I_D = 4$ mA at room temperature.

JFET Monolithic Preamplifier

SPICE plot of the forward gain of the IPA3 preamplifier at various nodes. The input-output gain is the one measured on the source of J8.

Experimental Characterization

IPA3 measured characteristics

Parameter		L-type	H-type
Input Device		NJFET, $W = 11400 \ \mu m, \ L = 5 \ \mu m$	
Open-loop input capacitance		50 pF	40 pF
Power dissipation		80 mW	
DC gain A ₀	$Z_{OUT} = 10 \text{ k}\Omega$	82 dB	75 dB
	$Z_{OUT} = 100 \Omega$	76 dB	70 dB
Rise time ($C_D = 500 \text{ p}, C_F = 33 \text{ pF}$)		15 ns	
Noise voltage $/\sqrt{Hz}$] (f > 1 kHz)	T= 300 K	0.6	0.7
	T = 120 K	0.4	0.4
Equivalent noise charge [e rms] $(RC)^2$ - $(CR)^2$ bipolar shaping at $t_p = 50$ ns		$ENC = 1200 + 18 C_D$	$ENC = 1100 + 21 C_D$

ENC as a function of temperature for IPA3 L and H preamplifiers. The measurements have been carried out with $C_D = 500$ pF detector capacitance and bipolar shaping obtained from an (RC)2 -(CR)2 filter. a): 50 ns peaking time; b): 20 ns peaking time.

DEVICES: Silicon JFET: Monolithic JFET Process

Cross section of adjacent devices built by means of the buried layer process.

Simplified Fabrication Process (Buried Layer, Diffused S, D, G Process)

1	Starting wafer: 0.5 Ωcm, N-type, (111) Silicon
2	Diffuse back-gate wells: 0.002 Ωcm
3	Grow oxide: t _{ox} ~ 50 nm
4	Strip oxide, chemical clean and epi-growth.
	t _{epi} ~ 5-7 μm
	$R_{epi} = 0.5 \ \Omega cm \ (L-type) \ and \ 1.5 \ \Omega cm \ (H-type)$
5	Pattern and diffuse isolation ring (P-type)
6	Pattern gate and gate diffusion (P-type)
7	Pattern source and drain and diffusion (N-type)
8	Open contact window. Probe test structures.
	Gate targeting (by additional drive-in)
9	Nitride deposition (dielectric layer to isolate metal)
10	Evaporate and pattern metal (aluminum)
11	Nitride protective overcoat

Devices: Bipolar Transistors

• The I_b = 12.5 μA , corresponding to R_{par} = 4000 Ω . The noise corner time constant is

$$\tau_C = C_d \sqrt{R_s R_p} = 100 ns$$

- In short: forget it.
- Even using SiGe ($\beta = 500-1000$ at cryogenic temperature) is unfeasible

Devices: CMOS

PMOS TMSC 0.25 µm Technology

 $L = 0.36 \ \mu m \ W = optimized for minimum noise at a given power (PMOS, L=0.36 \mu m, W=42 mm, Cg=91 pF, gm=153 mS @ 20 mW)$

$$C_d = 500 \ pF \ t = 1 \ \mu s$$

\

Needs Id = 10 mA (P = 20 mW) to reach ENC < 1000 e at 1 μs

From G. De Geronomo

Devices: CMOS

PMOS TMSC 0.25 µm Technology

 $L = 0.36 \mu m W = optimized for minimum noise at a given power$

$$C_d = 500 \text{ pF t} = 1 \text{ } \mu\text{s}$$

Needs Id = 10 mA (P = 20mW) to reach ENC < 1000 e at 1 μ s

P = 20 mW Cd = 500 pF vs. measurement time

(From G. De Geronimo)

Reference: "MOSFET Optimization in Deep Submicron Technology for Charge Amplifiers", G. De Geronimo, P. O'Connor, presented at the "2004 IEEE Nuclear Science Symposium", Rome

Cryogenic vs. "Warm" Electronics

- Cable capacitance $\sim 50 \text{pF/m} \Rightarrow 200 \text{ pF for 4 m cable run } (500 \text{ pF for 10 m})$
- Cd ~ 500 pF \Rightarrow 700 pF total capacitance contributing to the noise (1000 pF for 10 m)

CRYOGENIC ELECTRONICS REDUCES THE NOISE

OTHER ADVANTAGES:

- Avoids transmission of very low level signals (better "Faraday cage")
- at the cost of complicating the electronics (MORE POWER!), could reduce the number of feedthrough by data reduction ("sparsification") in hardware
- reliability (if properly designed and built)

DISADVANTAGES

- Bubbling
- cryogenic load
- Purity